DOCUMENT RESUME

重ね 170 737

CS 004 850

AUTHOR TITLE Brown, Ann L.; French, Lucia A. The Zone of Potential Development: Implications for Intelligence Testing in the Year 2000. Technical

Report No. 128.

INSTITUTION

Bolt, Beranek and Newman, Inc., Cambridge, Mass.; Illinois Univ., Urbana. Center for the Study of

Reading.

SPONS AGENCY

National Inst. of Child Health and Human Development (NIH), Bethesda, Md.; National Inst. of Education

(DHEW). Washington, D.C.

PUB DATE CONTRACT GRANT May 79 400-76-0116

HD-00111: HD-05951; HD-06864

NOTE 46p

EDRS PRICE DESCRIPTORS MF01/PC02 Plus Postade.

*Educable Mentally Hardicapped; Elementary Education;

*Intelligence Tests; Predictive Validity; *Re*arded

children: Task Analysis; Testing; Test Validity

IDENTIFIERS

*Center for the Study of Reading (Illinois): Vygotsky

(Lev S)

ABSTRACT

The practice and interpretation of intelligence testing of educable retarded and learning disabled children is examined in this report. The current and future state of intelligence testing is discussed in terms of its predictive, diagnostic, and remedial functions. The first section places a consideration of individual testing formats within a framework of L. S. Vygotsky's theory of potential development and the underlying assumptions of that theory concerning task analysis and transfer of training. The second section considers the social nature of the testing situation and the degree of contextual support provided for the learner. The final section deals with U. Neisser's distinction between academic intelligence and everyday thinking, with particular reference to the life adjustment of mildly retarded citizens. (Author)

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFAME NATIONAL INSTITUTE OF EDUCATION

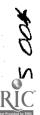
CENTER FOR THE STUDY OF READING

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATION OF POINTONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

Technical Report No. 128

IMPLICATIONS THE ZONE OF POTENTIAL DEVELOPMENT: FOR INTELLIGENCE TESTING IN THE YEAR 2000

Ann L. Brown and Lucia A. French University of Illinois at Urbana-Champaign


May 1979

University of Illinois at Urbana-Champaign 51 Gerty Drive Champaign, Illinois 61820

Bolt Beranek and Newman Inc. 50 Moulton Street Cambridge, Massachusetts 02138

The preparation of this paper was supported in part by Grants HD 06864, HD 05951, and a Research Career Development Award HD 00111 to the first author, from the National Institutes of Child Health and Human Development, and in part by the National Institute of Education under Contract No. US-NIE-C-400-76-0116. The development of many of the ideas expressed in the manuscript was greatly influenced by discussions with Michael Cole, who, of course, cannot be held responsible for their present instatiation. We would like to thank Joseph Campione and Judy DeLoach for their feedback, both positive and negative, concerning various ideas expressed in this manuscript, and Roberta Jones and Pat Laughlin for guiding us to pertinent references concerning group problem-solving.

We would like to express an especial appreciation to our colleagues at the Institute of Defectology in Moscow, V. I. Lubovski and T. V. Rozanova, for their hospitability and generosity in demonstrating the tests and procedures of defining zones of potential development.

Intelligence Testing

1

Abstract

The emphasis of this paper is on the practice and interpretation of intelligence testing of educable retarded and learning disabled children. The current and future state of intelligence testing is discussed in terms of three criteria: their predictive, diagnostic, and remedial functions. In the first section we consider individual testing formats within a framework of Vygotsky's theory of potential development and the underlying assumptions of that theory concerning task analysis and transfer of training. In the second section we consider the social nature of the testing situation and the degree of contextual support provided for the learner. In the final section we consider Neisser's distinction between academic intelligence and everyday thinking with particular reference to the life adjustment of mildly retarded citizens.

The Zone of Potential Development: Implications for Intelligence Testing in the Year 2000

This paper forms part of a series concerned with the general topic of the nature of intelligence (IQ) tests, and the purposes they will serve in the year 2000. As there is by no means consensus on the nature and form of IQ tests in the year 1979, such a broad topic invites speculation. We address the topic from the general viewpoint of theories of cognitive development and instruction, and from the particular perspective of the influence of IQ testing on the prediction, diagnosis, and remediation of mild mental retardation.

At present, IQ tests serve one function exceptionally well: they predict academic success or failure. As the tests were designed originally to fill the pragmatic need of predicting school success, they are composed of items that are representative of the kinds of problems that traditionally dominate school curricula. Children who perform adequately on school tasks also perform adequately on the very similar IQ test items—a tautology we should not find surprising (Brown & French, 1979; Sharp, Cole, & Lave, 1979).

Controversy concerning the efficacy of IQ tests arises when they are either over-interpreted or called upon to fulfill functions they were never designed to meet. Over-interpretation commonly takes the form of interpreting IQ measures as indices of "general intelligence," a form of idealized cognitive efficiency that somehow transcends the particular tasks and contexts of schools and other testing environments. Functions frequently demanded of IQ tests, which they were not designed to meet, are that they predict

adaptations other than school assimilation, and that they serve an essentially diagnostic function.

Consider first the problem of diagnosis; a major function that we would optimally like any form of intelligence assessment to perform is diagnostic, for the eventual aim of those concerned with instructional psychology is to improve school performance rather than just to predict its course. In the first section of this paper we will consider possible mechanisms for improving the diagnostic functions of testing situations with an eye to possible remediation. We place our discussion of diagnosis and remediation in the framework of Vygotsky's (1978) theory of a zone of potential development. To illustrate the distinction between prediction and diagnosis we compare the basic philosophies underlying Soviet and American testing procedures (Section I). In Section II we consider the social nature of the testing situation and the degree of contextual support provided for the learner. The influence this might have on the prediction and diagnosis of cognitive status is examined.

Next, consider the predictive function of IQ tests from the standpoint of the identification of mildly retarded students. While it is true that current IQ tests serve a useful function in predicting the almost inevitable school failure of this population, there are some severe limitations to the predictive power of existing tests.

The first problem is that given our existing battery of IQ tests, we are generally unable to predict the academic failure of mildly retarded children prior to its occurrence. Roughly speaking, the existing tests provide valid

4

prognostic information at the time when even the least astute teacher or parent will have noted the child's school difficulties. Referral to special education classes is still predominantly based on IQ measures, but referral to the testing situation that reveals the low IQ is usually based on the teacher's identification of an existing school learning problem. One obvious need for future test development is that we improve our understanding and measurement of significant early indices of cognitive delay, so that we can identify (and hopefully alleviate) some of the problems of mildly retarded children before they fail in school. We will not address this topic further here, but it is a major concern in our program of research on the diagnosis and remediation of the slow-learning child (Brown & De Loache, 1978).

The second major limitation to the predictive power of current IQ tests is that within the mildly retarded range of ability (IQ 50-80), IQ does not relate in significant ways to successful adaptation after the school years. Mild retardation has been designated a school disease, for many who are diagnosed as retarded during the school years lose their school-imposed label and merge into adult society (Edgerton, 1967). In Section III, we will consider the nature of academic intelligence and everyday thinking in terms of the feasibility of designing intelligence tests to predict the real-life adjustment of mildly retarded adults.

The Zone of Potential Development

Basic Description of the Soviet Testing Philosophy

For a variety of historical and social reasons standardized intelligence tests have been criticized, and at time officially banned, in the Soviet Union (Brozek, 1972; Wozniak, 1975); at the same time, however, an essential feature of Soviet social policy is a major commitment to special education (Vlasova, 1972). In recent years there has been a growing interest in the development of reliable methods for the differential diagnosis of learning disabilities, or temporary retardation, and more serious and permanent mental impairment (Vlasova & Pevzner, 1971; Zabramna, 1971). Given the unfavorable climate for the establishment of standardized testing, the Soviets have concentrated on the development of clinical batteries of diagnostic tasks to serve the purpose of evaluating differences in learning potential. Perhaps surprisingly, the content of the clinical batteries does not seem to vary greatly from our standardized psychometric tests, but the methods of testing and the data of prime interest reflect the different testing philosophies of the two approaches.

The method of clinical assessment is based on Vygotsky's theory of a zone of proximal (Vygotsky, 1978) or potential development (Luria, 1961). The distinction is made between a child's actual developmental level, i.e., his completed development as might be measured on a standardized test, and his level of potential development, the degree of competence he can achieve with aid. Both measures are seen as essential for the diagnosis

of learning disabilities and the concomitant design of remedial programs (Egorova, 1973; Pevzner, 1972).

A child's standardized test performance is regarded as providing at best a quantitative index of current developmental status, or actual developmental level. Although informative concerning what the child knows now, it provides only indirect evidence about how he arrived at this state. Vygotsky (1978) claims that such measures also fail to provide any information about:

rocess of maturation, functions that will mature tomorrow but are in the embryonic state. These functions could be termed the 'buds' or 'flowers' rather than the 'fruits' of development. The actual developmental level characterizes mental development retrospectively, while the zone of proximal development characterizes mental development prospectively. (pp. 86-87)

The zone of proximal development is used as an indication of learning potential; children with the same current status on an 10 test item may vary quite widely in terms of their cognitive potential. It is claimed that a major difference between learning disabled and truly retarded children lies in the width of their potential zone. Given the central place of this concept in both clinical diagnosis and remedial training (Egorova, 1973), it is informative to consider exactly what the Soviets mean by the notion of proximal development and how they set about measuring its width.

A typical testing session consists of the initial presentation of a test item exactly as it would occur in an American IQ test with the child being asked to solve the problem independently. If the child fails to reach the correct solution, the adult progressively adds clues for solution and assesses how much additional information the child needs in order to solve the problem. The child's initial performance, when asked to solve the test item independently, provides information comparable to that gained with standardized American IQ testing procedures. The degree of aid needed before a child reaches solution is taken as an indication of the width of his potential zone. Once solution on a particular test item is reached another version of the original task is presented and transfer to the novel item is considered by calculating if the child requires fewer cues in order to reach solution.

The following is a concrete example of the testing materials and procedures. The problem presented to the child is a common IQ test item, usually referred to as pattern matching or geometric design. Such items occur on many standard tests, including the Binet, the WIPPSI, and the WISC. The child is given a model (picture) of a silhouette shape and he must copy this model by combining a subset of wooden geometric forms. In the Soviet version of this task, however, there is an interesting trick; some of the requisite shapes are not included in the set of available wooden pieces but must be constructed by joining two wooden pieces together.

The first step in the testing procedure is to present a small model picture and ask the child to copy it with his wooden shapes; if he fails,

Intelligence Testing

8

he is given a life-size representation of the to-be-copied shape. There are a series of additional prompts, including a model that has one composite geometric shape (corresponding to one of the wooden pieces) clearly delineated in the picture. If this does not lead to solution the child is given a further detailed model that clearly shows the join (trick) necessary to create the missing form. If all else fails the tester constructs the figure and then encourages the child to go through the construction with him.

Of particular interest to us were the "transfer" tests. Following solution of Problem 1 (provided by the tester if all else failed), the second problem is immediately presented, with the same series of aids if so needed. Problem 2 is a new picture problem where it is necessary to construct (by joining) two of the composite forms. One of the required joined shapes is identical to that required in Problem 1, the other is a new construction. It seemed to us that these features of Problem 2 tapped two kinds of transfer. Specific transfer would be measured by the recognition that the subpart constructed to solve Problem 1 was again required for Problem 2 solution. More general transfer would be the knowledge that joining shapes in general would be a requirement of the pattern copying task, and this knowledge should be reflected in the facility with which the child attempts to construct the new joined subpart. We would like to emphasize that this is our assessment of the transfer tests, and is not necessarily shared by our Soviet colleagues.

The Soviet diagnostic testing method provides invaluable information concerning the child's starting level of competence and an estimate of

the width of his zone of potential development, the level of competence he can reach with aid. In addition we gain information of the child's ability to profit from adult assistance, his speed of learning, and the facility with which he transfers the new skill across tasks. Of prime importance for the diagnosis of the cause of school fallure is the Soviet claim that whereas learning disabled (developmentally backward) and mildly retarded children tend not to differ greatly in terms of their starting competence on a variety of cognitive tasks, the two groups differ dramatically in terms of their ability to benefit from the additional cues provided by the tester. Learning disabled children need fewer prompts than retarded children before they arrive at a satisfactory solution. They are also more proficient at transferring the result of their brief learning experience to new variations of the task within the testing situation and in subsequent independent class performance. In studies where comparisons with normal children were included, the average children were even more effective at initial learning and subsequent transfer than were the two clinical populations (Egorova, 1973).

In common with many second-hand reports of Soviet psychology, this description is notable for its lack of specificity. Although some examples of the specific test batteries are available to American readers (Wozniak, 1975), these examples must be only fragmentary illustrations of the type of test battery needed to fulfill the functions claimed for it, i.e., the differential diagnosis of fine degrees of retardation based on estimations of cognitive potential.

Task Analysis and Transfer of Training

Quite explicit in the Soviet description of their testing program is the role of Vygotsky's theory of a proximal zone of development; the Soviets emphasize the place of graduated aids in uncovering the "readiness" of chil-dren to perform competently in any task domain. Also entailed by this position, and at least as important to contemporary theories of cognition, is an implicit theory of task analysis and transfer of training. Although the sample of tests we viewed clearly showed an implicit dependence on task analysis, our Soviet colleagues appeared to regard this aspect of their work as secondary, indeed almost as a serendipitous outcome of their considerable experience in devising clinically sensitive tasks.

We would like to argue that testing the zone of potential development as a means of diagnosis requires a detailed task analysis of a suitable set of cognitive tasks and detailed task analysis of possible transfer probes (Brown, 1978; Campione & Brown, 1978). Without this information it would be difficult to select either the series of graduated alds for the original learning task, or suitable methods for assessing the speed and efficiency of transfer. The importance of this point should not be lost in the rhetoric surrounding Vygotsky's theory of cognitive potential. In the diagnostic sessions, what is being measured, or at least the factor the Soviets claim is essential for differential diagnosis, is the efficiency of learning within any one task domain. The assessment of the width of a child's zone of potential development actually translates into the assessment of how many prompts he needs to solve problem 1,

versus problem 2, versus problem 3, etc. A child judged to have a wide zone of potential development is one who reduces the number of prompts needed from trial to trial, i.e., who shows effective transfer of a new solution across similar problems. As one of the traditional definitions of intelligence is the ability to learn, then "estimates of it [intelligence] are, or at least should be, estimates of the ability to learn. To be able to learn harder things, or to be able to learn the same things more quickly, would then be the single basis of evaluation. (Thorndike, 1926, pp. 17-18). The Soviet attempt to measure directly the ability to learn is of more than casual interest.

We hope that even this informal look at the Soviet testing method makes obvious how great a reliance on careful task analysis and transfer measurement such a testing procedure would demand. It is in these domains that contemporary American instructional psychologists have devoted a great deal of attention and expertise (Glaser, 1978). Research programs based on anything from enlightened intuition to detailed computer simulations have formed the base of a growing interest in providing rigorous task analyses of basic cognitive skills. Of particular interest in this paper is the extensive work that has been conducted with facsimilies of 10 test items (Estes, 1974): e.g., the series completion task (Holtzman, Glaser, & Pellegrino, 1976; Kotovsky & Simon, 1973; Simon & Kotovsky, 1963), geometric and verbal analogies (Mulholl and, Pellegrino, & Glaser, Note 1; Pellegrino & Glaser, Note 2; Sternberg, 1977; Pellegrino & Glaser, in press), and Raven's (1938) progressive matrices items (Hunt, 1974; Jacobs & Vandeventer, 1971, 1972; Ling, 1973).

The aim of detailed task analyses is very similar to that of the Soviet testing program. Feasible rules for solution are specified explicitly and the tasks engineered in such a way that the particular rules used by a child can be detected. When this is done well, errors produced by the novice can be just as informative as correct responses produced by the pro-ficient. With a well-designed task analysis it is often possible to detect not only the presence or absence of a desired piece of knowledge or skill but intermediate stages of understanding as well. Such a program of task analysis provides optimal information for those who would att-empt any form of instructional intervention, and the Soviet testing met thod is in many ways a mini-instructional format.

In order to assess how well the child has benefited from instructional aid sit is necessary that we have a battery of appropriate transfer tests. This again demands careful attention to the underlying processes being tap-ped by any one task so that suitable varieties of surface formats can be selected that tap the same underlying rules (Brown & Campione, 1978). In the process of constructing batteries of suitable task domains that per-mit transfer, careful attention will have to be paid to the difficulty of "problem isomorphs" (Simon & Hayes, 1976), but hopefully tasks can be adapted or constructed that vary in surface structure, but at the same time demand identical processes for their solution. On initial inspection, tasks such as series completion, geometric analogies, and matrices problems all seem ideally suited to provide near and far transfer tests (Brown, 1978). For example, near transfer items might consist of a

set of distinct problems demanding the same rules of solution (e.g., movement in a matrices problem). Intermediate transfer items might be those that demand the same rule in two tasks differing somewhat in their surface format, e.g., movement in a matrices problem and in a geometric analogy problem (Hunt, 1974; Sternberg, 1977), or the backward next rule in series completion items (Simon & Kotovsky, 1963) and in the Binet Letter-number decoding task. Even farther transfer, between quite disparate tasks, might be implicated if Greeno (1978, p. 243) is correct in asserting the generality of the "psychological process of solving any analogy or series extrapolation problem involving identifying relations among components and fitting the relations together in a pattern."

Ideally what would be required for a systematic consideration of zones of potential development would be a series of well-analyzed task domains with near, intermediate, and far transfer items well defined. In addition, one would need a series of relatively unrelated constellations of tasks where direct transfer from one to the other would not be expected. This would enable us to consider whether a child is adept at benefiting from graduated learning aids in one domain or in almost all domains. If there appears to be consistency in the width of an individual's zone in a variety of disparate domains, one might use the width as an index of his general "learning to learn" effectiveness, a measure of his "speed and efficiency" of new learning (Estes, 1974; Thorndike, 1926). If, on the other hand, the child's zone width varies as a function of the

specific task constellation, this might indicate specific areas of learning disability. We realize that this must sound rather reminiscent of the ageold search for a separation of g and s factors (Spearman, 1927), and we will not reiterate the pitfalls of such a search here (Sternberg, 1977; Tuddenham, 1966). We would like to emphasize, however, that our approach would be based on process theories of learning rather than on a factor analytic determination of task clusters. We would also like to emphasize that the field of instructional psychology is still a long way from completing the theoretical work and empirical verification necessary for devising such transfer domains (Brown & Campione, 1978). Considerable advances have been made in recent years, however, and by the year 2000 perhaps such a technology should be within the grasp of cognitive process theories of academic intelligence.

The development of a systematic battery of well-analyzed learning and transfer domains would be particularly useful for improving our diagnostic procedures for detecting and remediating the learning problems of academically marginal children. The current picture we have of such children can be summarized briefly. They perform poorly on a variety of problems that demand the use and control of strategies for adequate solution. With intensive, well-designed training they improve their performance dramatically, particularly when such training concentrates on both inculcating the specific strategies and providing detailed instructions concerning self-regulation (Brown, 1978). Such children experience difficulty primarily in

transferring the results of any training to new situations, and this diagnostic transfer failure is particularly likely to occur if explicit instruction in self-regulatory mechanisms is not provided (Brown & Campione, 1978; Brown, Campione, & Barclay, in press; Meichenbaum, 1977-see also the section on Interpersonal and Intrapersonal Thinking, below). Because the Soviet method of testing the zone of potential development consists of a mini-training series, followed by well-designed transfer probes, it should be particularly sensitive to the characteristic learning problems of educable retarded children. We are currently examining the transfer efficiency of retarded children, using a format similar to that used by the Soviets to uncover the zone of potential development. We hope that such a research program will provide guidelines for the development of tests of cognitive efficiency with greater diagnostic power than current standardized testing procedures.

Interpersonal and Intrapersonal Thinking Vygotsky's Theory of Internalization

In the preceding section we were primarily concerned with the problems associated with the selection of a suitable battery of tasks with which to test the width of a child's zone of potential development. Here we will consider another direction for research implied by the theory.

Vygotsky's (1978, p. 86) definition of the zone of proximal development is "the distance between the actual developmental level as determined by individual problem solving and the level of potential development as

determined through problem solving under adult guidance or in collaboration with more capable peers." To put this statement into historical perspective it is necessary to consider briefly the concept of internalization, so important to Vygotsky's thinking (Vygotsky, 1978; Wertsch, in press). Vygotsky argues that all psychological processes are initially social, shared between people, particularly between child and adult, and that the basic interpersonal nature of thought is transformed through experience to an intrapersonal process. Thus, for Vygotsky, the fundamental process of development is the gradual internalization and personalization of what was originally a social activity.

We propose that an essential feature of learning is that it creates the zone of proximal development; that is, learning awakens a variety of developmental processes that are able to operate only when the child is interacting with people in his environment and in cooperation with his peers. Once these processes are internalized, they become part of the child's independent developmental achievement (Vygotsky, 1978, p. 90).

From Vygotsky's viewpoint it is essential to consider a child's problem solving abilities in situations other than traditional testing mileaux, situations such as mother-child dyads (Wertsch, 1978), children tutoring children (Allen, 1976), and group problem-solving situations (Kelley & Thibaut, 1954). In the basic clinical testing situation described previously, it is a supportive adult who leads and guides the child to the limits of his current ability. But other social settings could also

serve the function of uncovering the uppermost level a child can reach with aid. In that the use of a social setting to uncover learning potential mimics the normal process of development—i.e., the social becoming internalized as the individual progresses—then interpersonal situations might prove especially effective at revealing previously untapped learning potential.

Traditional theories of group problem solving are especially interesting in this context because they often parallel Vygotsky's thinking. For example, Bales (1950) contends that individual problem solving and group problem solving are necessarily similar, as the one (individual) is born of the other (social).

Individual problem solving is essentially in form and in genesis a social process: thinking is a re-enactment by the individual of the problem-solving process as he went through it with other individuals." (p. 62)

Similarly, Kelly and Thibaut, also put forward a theory of internalization similar to Vygotsky's when they suggest that an individual:

through interaction with other persons. It is by no means entirely fanciful to suppose that he 'internalizes' certain problem-solving functions that are originally performed for him by others. For example he may internalize a 'critic' role in the sense of learning to apply to himself the same standards and rules of critical evaluation that another person has previously manifested in interaction with him. (p. 738)

nico de Caracteria de Contrara de Contrara de April a como Contrara de Contrar

Whether the "critical other" is the mother, the teacher, a peer or an older child, a consideration of the effects of dyadic/group problem-solving in children would seem to have great potential for: (1) assessing the effects of situational variables on task performance, (2) uncovering a child's zone of potential development, and (3) acting as a learning vehicle for improving a child's performance.

firm evidence to support this suggestion is, unfortunately, not yet available. Although there exists a considerable literature concerning such relevant areas as group problem solving (Davis, Laughlin, & Komorita, 1976; Kelley & Thibaut, 1954), and cross-age tutoring (Allen, 1976), the emphasis of prior research has been somewhat different from the one we would like to see, i.e., a concentration on group influences on individual learning. For example, in the cross-age tutoring programs we know that the tutor tends to be the major beneficiary of the tutoring process (Allen & Feldman, 1974), but even when the tutees do show noticeable gains, improvement is measured against vague, global criteria, such as teacher ratings of general reading or arithmetic improvement (Horan, DeGirolomo, Hill, & Shute, 1974), rather than on the specific material that was the subject of tutoring. Similarly, the main concern in studies of group problem solving has been group effectiveness compared with individual performance (Kelley & Thibaut, 1954) rather than the influence of group activity on the learning of the individual child (Bos, 1937; Klugman, 1944).

20

Other-regulation and Self-regulation

What kinds of influence would we expect social interactions to have on the child's learning ability? While it must be true that task-specific strategies can be demonstrated by the expert and imitated by the novice within a social medium, this would not necessarily lead to the durable and generalized learning gains that Vygotsky's theory would demand and that current Soviet psychologists claim they achieve. A consideration of the little data we have concerning the dynamics of group/dyadic problem solving situations suggests that one of the major classes of cognitive activities that the group assumes initially (which may then be internalized by the child) are varieties of self-regulation skills (Brown & DeLoache, 1978; Meichenbaum, 1977).

Consider first a social psychologist's description of the major function of a problem-solving group.

Qualitatively group discussions seemed to be adequately characterized by the traditional analyses of individual thinking, e.g., stated by Dewey as: 1) motivation by some felt difficulty, 2) analysis and diagnosis, 3) suggestion of possible solution or hypothesis, 4) the critical tracing out of their implications and consequences, and perhaps 5) an experimental trying out, before 6) accepting or rejecting the suggestion. (Dashiell, 1935, p. 1131)

Most of these activities seem to be variants of the basic transsituational regulatory skills of predicting, checking, monitoring, and

reality testing (Brown, 1978; Brown & DeLoache, 1978). Similarly, Bales (1950) describes the early stages of group interaction as being concerned with a variety of regulatory activities including: asking for, giving, repeating, and clarifying information, asking for and giving directions, and asking for and suggesting ideas or plans for possible lines of action.

Shaw (1932) also noted that one major function of the group was that it acts as a form of executive to its individual members. For example, the initiator of a suggestion will reject his own plan only one-third as often as will other members of the group. The group members function together to reject inadequate plans that escape the notice of individuals working alone. Thus a major function of the group is that it makes overt many of the executive functions that are usually hidden when an individual works alone on a problem. Kelley & Thibaut (1954) suggest this essential role of critic and evaluator, first learned in interpersonal setting, becomes internalized as self-regulatory skills.

This genesis from other-regulation to self-regulation is the major focus of Wertsch's (in press) research with mother-child dyads. The basic situation is that mothers and their young children are given the task of copying a wooden puzzle (a truck) with a set of identical composite pieces. The mother is encouraged to help the child if necessary. The following is a sample of a videotaped interaction between a mother and her $2\frac{1}{2}$ -year-old daughter:

(1) C: Oh (glances at model, then looks at pieces pile). Oh, now where's this one go? (picks up black cargo square, looks at copy, then at pieces pile)

- (2) M: Where does it go in this other one (the model)? (child puts black cargo square back down in pieces pile, looks at pieces pile)
- (3) M: Look at the other truck (model) and then you can tell. (Child looks at model, then glances at pieces pile)
- (4) C: Well (looks at copy then at model)
- (5) C: I look at it.
- (6) C: Um, this other puzzle has a black one over there. (child points to black cargo square in model)
- (7) M: Um-hm.
- (8) C: A black one (looks at pieces pile).
- (9) M: So where do you want to put the black one on this (your) puzzle? (child picks up black cargo square from pieces pile and looks at copy)
- (10) C: Well, where do you put it there? Over there? (inserts black cargo square correctly in copy)
- (11) M: That looks good.

Here we can see the mother serving a vital regulatory function, guiding the problem-solving activity of her child. Good examples of the mother assuming the regulatory role are statements 2, 3, and 9, where she functions to keep the child on task and to foster goal-relevant search and comparison activities. This protocol represents a mid-point between early stages, where the mother and child speak to each other, but the mother's utterances do not seem to be interpreted by the child as task relevant, and later stages, where the child assumes the regulatory functions herself, with the mother functioning as a sympathetic audience.

We would like to argue that social interactions between supportive "experts," such as mothers in Wertsch's example, master craftsmen in apprenticeship systems (Brown & French, 1979), and more experienced peers in tutoring studies (Allen, 1976) serve a major function of initially adopting the regulatory role of the group's activities. These regulatory roles are thereby made overt and explicit. This serves the diagnostic role of drawing out the novice's full capabilities, thus mapping his zone of potential development. It also serves a learning function that procedes via the mechanism of internalization from other-regulation to self-regulation (Vygotsky, 1978).

In summary, in order to improve the predictive and diagnostic power of our tests by the year 2000 we will be forced to consider both the child's initial ability and learning potential in a variety of testing formats quite unfamiliar to today's standardized procedures. For example, a child's ability in any one task domain could be considered first in an individual problem-solving format and then in a supportive social setting. This should provide valuable information concerning the situational specificity of cognitive abilities. Michael Cole and his colleagues have already made some headway with this approach. They video-taped a group of children solving traditional IQ-like items in a one-to-one formal testing setting and the same children solving the same items in a competitive social situation, i.e., a group IQ bee that involved animated discussion of the correct solutions. Another potentially illuminating testing procedure

would be to consider individual performance before and after experiences intended to uncover zones of potential development, experiences that could include supportive adult/child cooperation, and group activities. We are currently initiating a program of research to examine the feasibility of such an approach. By the year 2000, we may have a battery of techniques for considering the situational specificity of cognitive competences and the learning potential of individual children. Armed with such information we should be able to form a far more balanced picture of the child's capabilities than can be revealed by his score on standardized tests.

Academic Intelligence and Everyday Thinking

In several recent papers (Brown, 1978; Brown & Campione, 1978), we have considered the problems of intelligence and school performance from the particular perspective of the mildly retarded citizen, or "non-academic" members of our society. Although we have covered quite different topics in these papers, the basic organizational format is constant. In the first half of each paper we deal with methods of improving the diagnosis and remediation of the academic problems of slow-learning children and then, in the remainder of the paper, we raise doubts concerning the utility of the whole enterprise. This format is repeated here. The basic dilemma concerns the predictive and diagnostic functions of our current tests. As regards school success, we are quite confident that extant IQ tests do an adequate job of predicting the performance of slow-learning children. The problem is that this prediction is essentially negative; we can predict school failure. A concern for the general welfare of this group of

students leads us to call for the development of tests that do more than predict, tests that diagnose more sensitively and suggest areas where remediation is both necessary and possible. Thus, in the preceding section of the paper we have been concerned with methods of improving the diagnosis and remediation of academic problems.

When one considers the success of IQ tests for predicting adaptation outside of school settings, however, one must be less sanguine that existing tests provide any useful information concerning critical life experiences of the non-academically inclined citizens. In order to enhance our ability to predict and diagnose everyday cognitive efficiency, we must consider the limitations of the types of tasks that traditionally constitute our tests and curricula. In the preceding sections we have been concerned with academic intelligence, i.e., performance on closed system problems (Bartlett, 1958; Cole, Hood, & McDermott, Note 3), typical academic problems that have fixed goals, fixed structures, and known elements. In consequence, we have neglected the importance of the contrastive class of open system problems that predominate in everyday thinking. In a recent monograph, Cole, Hood, and McDermott (Note 3) have considered this distinction at length, and Neisser (1976) has also contrasted academic intelligence with general intelligence, so we will make the point only briefly here. Academic intelligence is the type of thinking that is fostered by the schools and measured by IQ tests. It is characterized by attitudes toward information, problems. and problem-solving peculiar to the school experience. There is an

emphasis on abstractness and speed of solution, an overriding goal of reaching the correct solution, and an attitude that there is one best answer that can be reached through rational processes based just on the information given in the problem. Contrast this description with everyaday reasoning. Speed is often irrelevant and a concrete solution is more appropriate than a general abstract rule. Also in contrast to academic problem solving, where there is little emotional commitment to any one answer, in everyday thinking there is a considerable investment in a particular answer, so much so that facts are often manipulated to support a desired conclusion. Everyday problems are open in the sense that one seldom has all the necessary information for solution and one does not necessarily weigh the available information rationally and evenly. Personal motivation is clearly involved in the selection and weighing of pertinent facts.

Traditionally, the main concern of cognitive psychology has been the problems of academic intelligence. Similarly, it is understandable that intelligence tests, which were developed to predict the ability of students to profit from school experience, measure primarily academic intelligence. For the mildly retarded, however, problems that tap academic intelligence are the primary source of intellective difficulties; failure to perform effectively in an academic setting is, of course, the reason they were diagnosed as retarded. But a case could be made that in many "everyday life" contexts, academic intelligence is either inappropriate or irrelevant for successful adaptation. Consider in this light

epidemological surveys of the prevalence of mental retardation; prevalence increases from birth until 16 years and then declines. In addition, when one considers the rate of successful adaptation to adult life of those in the mildly retarded range (1Q range 50-80), 1Q level does not predict successful adaptation (Edgerton, 1967).

The implication of the age dependence of prevalence rates, and the lack of relationship between IQ and social adaptation, is that the environment partially determines when or whether an individual can be judged as mentally deficient. In some sense, schools "create" a class of retarded citizens because of the reliance on academic intelligence which is beyond the capabilities of many. Once outside the academic setting, many of those who as children were diagnosed as retarded lead successful productive lives as adults. They are not considered retarded by their peers, or by authorities concerned with labeling retardation; hence the dramatic decline of the prevalence of retardation after the school years.

Reacting to the prevalence figures, Berkson (1978) called for an analysis not only of the abilities of the individual, but also of the environments to which he must adjust. While it is clearly reasonable to advocate measuring competence in relation to the demands of an individual's environment, so that we can either predict successful adaptation to adult life or diagnose areas where problems in adaptation may occur, there is a definite problem in carrying this out. Both cognitive and

developmental psychologists have concentrated on academic intelligence, on the cognitive capabilities of the college sophomore. Most of our theories of adult cognition are notable for this bias. We have almost totally ignored the blue collar worker, both in terms of estimating his abilities on academic closed system tasks, and in terms of defining the cognitive demands of various vocational occupations in which he might engage. There are, therefore, some fundamental questions that remain unanswered (or unasked!): What are the average capabilities of successful blue collar workers? What are the minimum demands of their everyday life? And therefore, for what end should education be preparing the children who must eventually join their ranks? In order to answer such questions we need to develop an understanding of the cognitive demands of everyday life based on a theory of cognition that includes a consideration of more than academic intelligence.

Tests of functional literacy and minimum competence are being developed nationally in response to a demand that schools foster skills of everyday cognition. But these tests, as currently constituted, are unlikely to help with the prediction and diagnosis of everyday thinking problems. One reflection of the weakness of existing tests of functional literacy is the wide disparity in the prevalency rates reported, a finding that suggests that there is no agreed upon criterion of just what functional literacy might be (Fisher, 1978). Far from being based on a coherent theory of everyday cognition, the test items are selected on the basis of two intuitive criteria. First, the skills are said to

reflect the competency expected from "normal eighth graders." Second, the Items are derived from a "common sense" approach to defining the composite skills that will be needed in adult life. Not only is there no theory of nonacademic adult intelligence to guide the selection of items, but there is also an absence of fundamental ethnographic analyses describing the types of competencies necessary for success in everyday life and in various blue collar occupations. Some of the Items selected for inclusion on tests of functional literacy may indeed turn out to be excellent examples of the minimum skills needed for survival, but in the absence of a theory of nonacademic adult cognition, and/or ethnographic observations concerning basic skills, we do not know what cognitive competences are needed for everyday life success. As a result we are basically ignorant concerning what type of intelligent activities we should foster in our schools and tap in our tests of "functional" literacy.

We would like to argue that it is imperative for us to determine the types of everyday reasoning engaged in by the average "man in the street," not just to advance our knowledge of the kinds of capabilities the mildly retarded must possess to "pass" in the adult world (Edgerton, 1967), but also to expand our basic theories of psychology so that they can go beyond the cognitive capabilities of the academic elite. As we develop a psychology of mundane cognition, focusing on how ordinary people cope with the demands for reasoning in everyday life, we will be better prepared to predict the ability of the mildly retarded to adapt to everyday life in accord with their performance on "tests of mundane cognition."

If we are to predict, diagnose, and maximize the learning potential and life success of mildly retarded persons, both the approaches described in this paper will be necessary. We need to refine and extend the diagnostic procedures we use to estimate academic intelligence so that we may alleviate school problems for as many as possible. In addition, we must also consider the "end point" of cognitive development for those not academically inclined. We need to know what the minimum cognitive competencies demanded by everyday life situations are, so that we can predict who will fail, diagnose the source of failure, and attempt to prepare the less able child to meet the demands of everyday life more adequately.

Conclusion

We have discussed the current and future state of intelligence testing in the light of three criteria: the predictive, diagnostic, and remedial functions they perform. Existing IQ tests perform the function they were designed to fulfill; that is, they predict academic success. By the year 2000 we would like to see an extension of the predictive power of intelligence tests so that we are able to (1) predict school failure prior to its occurrence and (2) predict potential adult competence by a consideration of performance on tests of everyday reasoning. To achieve these ends we will need to invest considerable energy to ethnographic surveys and experimental testing programs directed at improving our scanty knowledge in two main areas. First, we need sensitive indices of early

cognitive (in)competence that are related to subsequent academic intelligence. Second, we need theories and measures of functional literacy, minimal competence, and mundane cognition, so that we can begin to predict life adaptation as well as academic success.

We would also like to see an increased emphasis on the diagnosis and remediation of cognitive deficits, of both the academic and everyday variety. We argue that Soviet theory and practice regarding the clinical diagnosis of learning disabilities provide a useful framework in which to examine the child's learning potential. In addition, a variety of interpersonal testing formats should be employed to examine the situational specificity of any cognitive ability, as well as the child's potential for benefiting from expert aid. Considering the current limited service to the identification and treatment of the retarded provided by 10 tests in the year 1979, any evidence of improvement by the year 2000 would be welcomed.

Reference Notes

- Mulholland, T. M., Pellegrino, J. W., & Glaser, R. <u>Components of geometric analogy solution</u>. Paper presented at the meeting of the Psychonomic Society, Washington, D.C., November, 1977.
- Pellegrino, J. W., & Glaser, R. <u>Components of inductive reasoning</u>.
 Paper presented at the Office of Naval Research/Navy Personal Research and Development Center Conference on Aptitude Learning and Instruction: Cognitive Process Analysis, San Diego, March, 1978.
- Cole, M., Hood, L., & McDermott, R. <u>Ecological niche picking: Ecological invalidity as an axiom of experimental cognitive psychology</u>.
 Unpublished manuscript. Laboratory of Comparative Human Cognition and Institute for Comparative Human Development. Rockefeller University, 1978.

References

- Allen, V. L. Children as teachers: Theory and research on tutoring.

 New York: Academic Press, 1976.
- Allen, V. L., & Feldman, R. S. Learning through tutoring: Low-achieving children as tutors. Journal of Experimental Education, 1974, 42, 1-5.
- Bales, R. F. Interaction process analysis: A method for the study of small groups. Cambridge, Mass.: Addison-Wesley, 1950.
- Bartlett, F. C. Thinking: An experimental and social study. New York:

 Basic Books, 1958.
- Berkson, G. Social ecology and ethology of mental retardation. In

 G. P. Sackett (Ed.), Observing behavior: Theory and application in

 mental retardation. Baltimore: University Park Press, 1978.
- Bos, M. C. Experimental study of productive collaboration. Acta Psychologica, 1937, 3, 315-426.
- Brown, A. L. Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology. Hillsdale, N.J.: Erlbaum, 1978.
- Brown, A. L., & Campione, J. C. Permissible inferences from the outcome of training studies in cognitive development research. Quarterly

 Newsletter of the Institute for Comparative Human Development, 1978, 2, 46-53.
- Brown, A. L., Campione, J. C., & Barclay, C. R. Training self-checking routines for estimating test readiness: Generalization from list learning to prose recall. Child Development, in press.

- Brown, A. L., & DeLoache, J. S. Skills, plans and self-regulation. In R. Siegler (Ed.), <u>Children's thinking: What develops?</u> Hillsdale, N.J.: Erlbaum, 1978.
- Brown, A. L., & French, L. A. The cognitive consequences of education:

 School experts or general problem solvers. Commentary on "Education and Cognitive Development: The Evidence from Experimental Research" by D. Sharp, M. Cole, & C. Lave. SRDC Monographs, 1979.
- Brozek, J. To test or not to test: Trends in the Soviet views. <u>Journal</u> of the History of the Behavioral Sciences, 1972, <u>8</u>, 243-248.
- Campione, J. C., & Brown, A. L. Toward a theory of intelligence: Contributions from research with retarded children. <u>Intelligence</u>, 1978, <u>2</u>, 279-304.
- Dashiell, J. F. Experimental studies of the influence of social situations on the behavior of individual human adults. In C. Murchison (Ed.),

 Handbook of social psychology. Worchester, Mass.: Clark University

 Press, 1935.
- Davis, J. H., Laughlin, P. R., & Komorita, S. S. The social psychology of small groups: Cooperative and mixed-motive interactions. <u>Annual</u>

 Review of Psychology, 1976, 27, 501-541.
- Edgerton, R. B. <u>The cloak of competence</u>. Berkeley: University of California Press, 1967.
- Egorova, T. V. <u>Peculiarities of memory and thinking in developmentally</u>

 <u>backward school children</u>. Moscow: Moscow University Press, 1973.

- Estes, W. K. Learning theory and intelligence. American Psychologist, 1974, 29, 740-749.
- Fisher, D. L. <u>Functional literacy and the schools</u>. Washington, D.C.:

 National Institute of Education, 1978.
- Glaser, R. (Ed.). Advances in instructional psychology (Vol. 1). Hillsdale, N.J.: Erlbaum, 1978.
- Greeno, J. G. Natures of problem-solving abilities. In W. K. Estes (Ed.),

 Handbook of learning and cognitive processes (Vol. 5). Hillsdale,

 N.J.: Erlbaum, 1978.
- Holtzman, T. G., Glaser, R., & Pellegrino, J. W. Process training derived from a computer simulation theory. Memory and Cognition, 1976, 4, 349-356.
- Horan, J. J., DeGirolomo, M. A., Hill, R. L., & Shute, R. E. The effects of older-peer participant models on deficient academic performance.

 Psychology in the Schools, 1974, 2, 207-212.
- Hunt, E. B. Quote the raven? nevermore! In L. W. Gregg (Ed.), Knowledge and cognition. Hillsdale, N.J.: Erlbaum, 1974.
- Jacobs, P. I., & Vandeventer, M. The learning and transfer of double classification skills by first graders. Child Development, 1971, 42, 149-159.
- Jacobs, P. I., & Vandeventer, M. Evaluating the teaching of intelligence.

 Education and Psychological Measurement, 1972, 32, 235-248.
- Kelley, H. H., & Thibaut, J. W. Experimental studies of group problem solving in process. In G. Lindzey (Ed.), <u>Handbook of social psychology</u> (Vol. 2). Reading, Mass.: Addison-Wesley, 1954.

- Klugman, S. F. Cooperative vs. individual efficiency in problem solving.

 Journal of Educational Psychology, 1944, 35, 91-100.
- Kotovsky, K., & Simon, H. A. Empirical tests of a theory of human acquisition of concepts for sequential patterns. <u>Cognitive Psychology</u>, 1973, 4, 399-424.
- Linn, M. C. The role of intelligence in children's response to instruction.

 Psychology in the Schools, 1973, 10, 67-75.
- Luria, A. R. Study of the abnormal child. American Journal of Orthopsychiatry, 1961, 31, 1-16.
- Meichenbaum, D. <u>Cognitive behavior modification: An integrative approach</u>.

 New York: Plenum Press, 1977.
- Neisser, U. General academic and artificial intelligence. In L. Resnick (Ed.), The nature of intelligence. Hillsdale, N.J.: Erlbaum, 1976.
- Pellegrino, J. W., & Glaser, R. Cognitive correlates and components in the analysis of individual differences. Intelligence, in press.
- Pevzner, M. S. Clinical characteristics of children with retarded development. <u>Defektologiia</u>, 1972, <u>3</u>, 3-9.
- Raven, J. C. <u>Progressive matrices: A perceptual test of intelligence</u>.

 London: Lewis, 1938:
- Sharp, D., Cole, M., & Lave, C. Education and cognitive development: The evidence from experimental research. SRDC Monographs, 1979.
 - Shaw, M. E. A comparison of individual and small groups in the rational solution of complex problems. <u>American Journal of Psychology</u>, 1932, 44, 491-504.

- Simon, H. A., & Hayes, J. R. The understanding process: Problem isomorphs.

 Cognitive Psychology, 1976, 8, 165-190.
- Simon, H. A., & Kotovsky, K. Human acquisition of concepts for sequential patterns. <u>Psychological Review</u>, 1963, <u>70</u>, 534-546.
- Spearman, C. The abilities of man. New York: Macmillan, 1927.
- Sternberg, R. J. <u>Intelligence</u>, information processing, and analogical reasoning: The componential analysis of human ability. Hillsdale, N.J.: Erlbaum, 1977.
- Thorndike, E. L. <u>Measurement of intelligence</u>. New York: Teachers College, Columbia University, 1926.
- Tuddenham, R. D. The nature and measurement of intelligence. In L. Postman (Ed.), Psychology in the making. New York: Knopf, 1966.
- Vlasova, T. A. New advances in Soviet defectology. <u>Soviet Education</u>, 1972, 14, 20-39.
- Vlasova, T. A., & Pevzner, M. S. (Eds.). [Children with temporary retardation in development.] Moscow: Pedagogika, 1971.
- processes. (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Cambridge, Mass.: Harvard University Press, 1978.
- Wertsch, J. V. Adult-child interaction and the roots of metacognition.

 Quarterly Newsletter of the Institute for Comparative Human Development,
 1978, 1, 15-18.
- Wertsch, J. V. From social interaction to higher psychological processes:

 A clarification and application of Vygotsky's theory. Human Development, in press.

- Wozniak, R. H. Psychology and education of the learning disabled child in the Soviet Union. In W. Craikshank & D. P. Halahan (Eds.), Research and theory in minimal cerebral dysfunction and learning disability.

 Syracuse, N.Y.: Syracuse University Press, 1975.
- Zabramna, S. D. (Ed.). [The selection of children for schools for the mentally retarded.] Moscow: Prosveshchenie, 1971.

Footnotes

The preparation of this paper was supported in part by Grants HD 06864, HD 05951, and a Research Career Development Award HD 00111 to the first author, from the National Institutes of Child Health and Human Development, and in part by the National Institute of Education under Contract No. US-NIE-C-400-76-0116. The development of many of the ideas expressed in the manuscript was greatly influenced by discussions with Michael Cole, who, of course, cannot be held responsible for their present instantiation. We would like to thank Joseph Campione and Judy DeLoache for their feedback, both positive and negative, concerning various ideas expressed in this manuscript, and Roberta Jones and Pat Laughlin for guiding us to pertinent references concerning group problem-solving.

We would like to express an especial appreciation to our colleagues at the institute of Defectology in Moscow, V. I. Lubovski and T. V. Rozanova, for their hospitability and and generosity in demonstrating the tests and procedures of defining zones of potential development.

CENTER FOR THE STUDY OF READING

READING EDUCATION REPORTS

- No. 1: Durkin, D. Comprehension Instruction—Where are You?, October 1977. (ERIC Document Reproduction Service No. ED 146 566, 14p., HC-\$1.67, MF-\$.83)
- No. 2: Asher, S. R. Sex Differences in Reading Achievement, October 1977. (ERIC Document Reproduction Service No. ED 145 567, 30p., HC-\$2.00, MF-\$.83)
- No. 3: Adams, M. J., Anderson, R. C., & Durkin, D. Beginning Reading: Theory and Practice, November 1977. (ERIC Document Reproduction Service No. ED 151 722, 15p., HC-\$1.67, MF-\$.83)
- No. 4: Jenkins, J. R., & Pany, D. *Teaching Reading Comprehension in the Middle Grades*, January 1978. (ERIC Document Reproduction Service No. ED 151 756, 36p., HC-\$2.06, MF-\$.83)
- No. 5: Bruce, B. What Makes a Good Story?, June 1978. (ERIC Document Reproduction Service No. ED 158 222, 16p., HC-\$1.67, MF-\$.83)
- No. 6: Anderson, T. H. Another Look at the Self-Questioning Study Technique, September 1978.
- No. 7: Pearson, P. D., & Kamil, M. L. Basic Processes and Instructional Practices in Teaching Reading, December 1978.

CENTER FOR THE STUDY OF READING

TECHNICAL REPORTS

- No. 1: Halff, H. M. Graphical Evaluation of Hierarchical Clustering Schemes, October 1975. (ERIC Document Reproduction Service No. ED 134 926, 11p., HC-\$1.67, MF-\$.83)
- No. 2: Spiro, R. J. Inferential Reconstruction in Memory for Connected Discourse, October 1975. (ERIC Document Reproduction Service No. ED 136 187, 81p., HC-\$4.67, MF-\$.83)
- No. 3: Goetz, E. T. Sentences in Lists and in Connected Discourse, November 1975. (ERIC Document Reproduction Service No. ED 134 927, 75p., HC \$3.50, MF \$.83)
- No. 4: Alessi, S. M., Anderson, T. H., & Biddle, W. B. Hardware and Software Considerations in Computer Based Course Management, November 1975. (ERIC Document Reproduction Service No. ED 134 928, 21p., HC-\$1.67, MF-\$.83)
- No. 5: Schallert, D. L. Improving Memory for Prose: The Relationship between Depth of Processing and Context, November 1975. (ERIC Document Reproduction Service No. ED 134 929, 37p., HC-\$2.06, MF-\$83)
- No. 6: Anderson, R. C., Goetz, E. T., Pichert, J. W., & Halff, H. M. *Two Faces of the Conceptual Peg Hypothesis*, January 1976. (ERIC Document Reproduction Service No. ED 134 930, 29p., HC-\$2.06, MF-\$.83)
- No. 7: Ortony, A. *Names, Descriptions, and Pragmatics,* February 1976. (ERIC Document Reproduction Service No. ED 134 931, 25p., HC-\$1.67, MF-\$.83)
- No. 8: Mason, J. M. Questioning the Notion of Independent Processing Stages in Reading, February 1976. (Journal of Educational Psychology, 1977, 69, 288-297)
- No. 9: Siegel, M. A. Teacher Behaviors and Curriculum Packages: Implications for Research and Teacher Education, April 1976. (ERIC Document Reproduction Service No. ED 134 932, 42p., HC-\$2.06, MF-\$.83)
- No. 10: Anderson, R. C., Pichert, J. W., Goetz, E. T., Schallert, D. L., Stevens, K. C., & Trollip, S. R. *Instantiation of General Terms*, March 1976. (ERIC Document Reproduction Service No. ED 134 933, 30p., HC-\$2.06, MF-\$.83)
- No. 11: Armbruster, B. B. Learning Principles from Prose: A Cognitive Approach Based on Schema Theory, July 1976. (ERIC Document Reproduction Service No. ED 134 934, 48p., HC-\$2.06, MF-\$.83)
- No. 12: Anderson, R. C., Reynolds, R. E., Schallert, D. L., & Goetz, E. T. *Frameworks for Comprehending Discourse*, July 1976. (ERIC Document Reproduction Service No. ED 134 935, 33p., HC-\$2.06, MF-\$.83)
- No. 13: Rubin, A. D., Bruce, B. C., & Brown, J. S. A Process-Oriented Language for Describing Aspects of Reading Comprehension, November 1976. (ERIC Document Reproduction Service No. ED 136 188, 41p., HC-\$2.06, MF-\$.83)
- No. 14: Pichert, J. W., & Anderson, R. C. Taking Different Perspectives on a Story, November 1976. (ERIC Document Reproduction Service No. ED 134 936, 30p., HC-\$2.06, MF-\$.83)
- No. 15: Schwartz, R. M. Strategic Processes in Beginning Reading, November 1976. (ERIC Document Reproduction Service No. ED 134 937, 19p., HC-\$1.67, MF-\$.83)
- No. 16: Jenkins, J. R., & Pany, D. Curriculum Biases in Reading Achievement Tests, November 1976. (ERIC Document Reproduction Service No. ED 134 938, 24p., HC-\$1.67, MF-\$.83)
- No. 17: Asher, S. R., Hymel, S., & Wigfield, A. *Children's Comprehension of High- and Low-Interest Material and a Comparison of Two Cloze Scoring Methods*, November 1976. (ERIC Document Reproduction Service No. ED 134 939, 32p., HC-\$2.06, MF-\$.83)
- No. 18: Brown, A. L., Smiley, S. S., Day, J. D., Townsend, M. A. R., & Lawton, S. C. *Intrusion of a Thematic Idea in Children's Comprehension and Retention of Stories*, December 1976. (ERIC Document Reproduction Service No. ED 136 189, 39p., HC-\$2.06, MF-\$.83)
- No. 19: Kleiman, G. M. The Prelinguistic Cognitive Basis of Children's Communicative Intentions, February 1977. (ERIC Document Reproduction Service No. ED 134 940, 51p., HC-\$3.50, MF-\$.83)
- No. 20: Kleiman, G. M. The Effect of Previous Context on Reading Individual Words, February 1977. (ERIC Document Reproduction Service No. ED 134 941, 76p., HC-\$4.67, MF-\$.83)

No. 22: Brown, A. L., & Campione, J. C. Memory Strategies in Learning: Training Children to Study Strategically, March 1977. (ERIC Document Reproduction Service No. ED 136 234, 54p., HC-\$3.50, MF-\$83)

- No. 23: Smiley, S. S., Oakley, D. D., Worthen, D., Campione, J. C., & Brown, A. L. Recall of Thematically Relevant Material by Adolescent Good and Poor Readers as a Function of Written Versus Oral Presentation, March 1977. (ERIC Document Reproduction Service No. ED 136 235, 23p., HC-\$1.67, MF\$-.83)
- No. 24: Anderson, R. C., Spiro, R. J., & Anderson, M. C. Schemata as Scaffolding for the Representation of Information in Connected Discourse, March 1977. (ERIC Document Reproduction Service No. ED 136 236, 18p., HC-\$1.67, MF-\$.83)
- No. 25: Pany, D., & Jenkins, J. R. Learning Word Meanings: A Comparison of Instructional Procedures and Effects on Measures of Reading Comprehension with Learning Disabled Students, March 1977. (ERIC Document Reproduction Service No. ED 136 237, 34p., HC-\$2.06, MF-\$.83)
- No. 26: Armbruster, B. B., Stevens, R. J., & Rosenshine, B. *Analyzing Content Coverage and Emphasis: A Study of Three Curricula and Two Tests*, March 1977. (ERIC Document Reproduction Service No. ED 136 238, 22p., HC-\$1.67, MF-\$.83)
- No. 27: Ortony, A., Reynolds, R. E., & Arter, J. A. *Metaphor: Theoretical and Empirical Research*, March 1977. (ERIC Document Reproduction Service No. ED 137 752, 63p., HC-\$3.50, MF-\$.83)
- No. 28: Ortony, A. Remembering and Understanding Jabberwocky and Small-Talk, March 1977. (ERIC Document Reproduction Service No. ED 137 753, 36p., HC-\$2.06, MF-\$.83)
- No. 29: Schallert, D. L., Kleiman, G. M., & Rubin, A. D. *Analysis of Differences between Oral and Written Language*, April 1977. (ERIC Document Reproduction Service No. ED 144 038, 33p., HC-\$2.06, MF-\$.83)
- No. 30: Goetz, E. T., & Osborn, J. *Procedures for Sampling Texts and Tasks in Kindergarten through Eighth Grade*, April 1977. (ERIC Document Reproduction Service No. ED 146 565, 80p., HC-\$4.67, MF-\$.83)
- No. 31: Nash-Webber, B. Anaphora: A Cross-Disciplinary Survey, April 1977. (ERIC Document Reproduction Service No. ED 144 039, 43p., HC-\$2.06, MF-\$.83)
- No. 32: Adams, M. J., & Collins, A. A Schema-Theoretic View of Reading Comprehension, April 1977. (ERIC Document Reproduction Service No. ED 142 971, 49p., HC-\$2.06, MF-\$.83)
- No. 33: Huggins, A. W. F. Syntactic Aspects of Reading Comprehension, April 1977. (ERIC Document Reproduction Service No. ED 142 972, 68p., HC-\$3.50, MF-\$.83)
- No. 34: Bruce, B. C. Plans and Social Actions, April 1977. (ERIC Document Reproduction Service No. ED 149 328, 45p., HC-\$2.06, MF-\$.83)
- No. 35: Rubin, A. D. Comprehension Processes in Oral and Written Language, April 1977. (ERIC Document Reproduction Service No. ED 150 550, 61p., HC-\$3.50, MF-\$.83)
- No. 36: Nash-Webber, B., & Reiter, R. Anaphora and Logical Form: On Formal Meaning Representation for Natural Language, April 1977. (ERIC Document Reproduction Service No. ED 142 973, 42p., HC-\$2.06, MF-\$.83)
- No. 37: Adams, M. J. Failures to Comprehend and Levels of Processing in Reading, April 1977. (ERIC Document Reproduction Service No. ED 145 410, 51p., HC-\$3.50, MF-\$.83)
- No. 38: Woods, W. A. *Multiple Theory Formation in High-Level Perception*, April 1977. (ERIC Document Reproduction Service No. ED 144 020, 58p., HC-\$3.50, MF-\$.83)
- No. 40: Collins, A., Brown, J. S., & Larkin, K. M. *Inference in Text Understanding, December 1977.* (ERIC Document Reproduction Service No. ED 150 547, 48p., HC-\$2.06, MF-\$.83)
- No. 41: Anderson, R. C., & Pichert, J. W. Recall of Previously Unrecallable Information Following a Shift in Perspective, April 1977. (ERIC Document Reproduction Service No. ED 142 974, 37p., HC-\$2.06, MF-\$.83)
- No. 42: Mason, J., Osborn, J., & Rosenshine, B. A Consideration of Skill Hierarchy Approaches to the Teaching of Reading, December 1977. (ERIC Document Reproduction Service No. ED 150 549, 176p., HC-\$10.03, MF-\$.83)
- No. 43: Collins, A., Brown, A. L., Morgan, J. L., & Brewer, W. F. *The Analysis of Reading Tasks and Texts*, April 1977. (ERIC Document Reproduction Service No. ED 145 404, 96p., HC-\$4.67, MF-\$.83)

- No. 44: McClure, E. Aspects of Code-Switching in the Discourse of Bilingual Mexican-Anterican Children, April 1977. (ERIC Document Reproduction Service No. ED 142 975, 38p., HC-\$2.06, MF-\$.83)
- No. 45: Schwartz, R. M. Relation of Context Utilization and Orthographic Automaticity in Word Identification, May 1977. (ERIC Document Reproduction Service No. ED 137 762, 27p., HC-\$2.06, MF-\$.83)
- No. 46: Anderson, R. C., Stevens, K. C., Shifrin, Z., & Osborn, J. *Instantiation of Word Meanings in Children*, May 1977. (ERIC Document Reproduction Service No. ED 142 976, 22p., HC-\$1.67, MF-\$.83)
- No. 47: Brown, A. L. Knowing When, Where, and How to Remember: A Problem of Metacognition, June 1977. (ERIC Document Reproduction Service No. ED 146 562, 152p., HC-\$8.69, MF-\$.83)
- No. 48: Brown, A. L., & DeLoache, J. S. Skills, Plans, and Self-Regulation, July 1977. (ERIC Document Reproduction Service No. ED 144 040, 66p., HC-\$3.50, MF-\$.83)
- No. 49: Goetz, E. T. Inferences in the Comprehension of and Memory for Text, July 1977. (ERIC Document Reproduction Service No. ED 150 548, 97p., HC-\$4.67, MF-\$.83)
- No. 50: Anderson, R. C. Schema-Directed Processes in Language Comprehension, July 1977. (ERIC Document Reproduction Service No. ED 142 977, 33p., HC-\$2.06, MF-\$.83)
- No. 51: Brown, A. L. Theories of Memory and the Problems of Development: Activity, Growth, and Knowledge, July 1977. (ERIC Document Reproduction Service No. ED 144 041, 59p., HC-\$3.50, MF-\$.83)
- No. 52: Morgan, J. L. Two Types of Convention in Indirect Speech Acts, July 1977. (ERIC Document Reproduction Service No. ED 145 405, 40p., HC-\$2.06, MF-\$.83)
- No. 53: Brown, A. L., Smiley, S. S., & Lawton, S. C. The Effects of Experience on the Selection of Suitable Retrieval Cues for Studying from Prose Passages, July 1977. (ERIC Document Reproduction Service No. ED 144 042, 30p., HC-\$2.06, MF-\$.83)
- No. 54: Fleisher, L. S., & Jenkins, J. R. Effects of Contextualized and Decontextualized Practice Conditions on Word Recognition, July 1977. (ERIC Document Reproduction Service No. ED 144 043, 37p., HC-\$2.06, MF-\$.83)
- No. 55: Jenkins, J. R., & Larson, K. Evaluating Error Correction Procedures for Oral Reading, June 1978. (ERIC Document Reproduction Service No. ED 158 224, 34p., HC-\$2.06, MF-\$.83)
- No. 56: Anderson, T. H., Standiford, S. N., & Alessi, S. M. Computer Assisted Problem Solving in an Introductory Statistics Course, August 1977. (ERIC Document Reproduction Service No. ED 146 563, 26p., HC-\$2.06, MF-\$.83)
- No. 57: Barnitz, J. Interrelationship of Orthography and Phonological Structure in Learning to Read, August 1977. (ERIC Document Reproduction Service No. ED 150 546, 62p., HC-\$3.50, MF-\$.83)
- No. 58: Mason, J. M. The Role of Strategy in Reading in the Mentally Retarded, September 1977. (ERIC Document Reproduction Service No. ED 145 406, 28p., HC-\$2.06, MF-\$.83)
- No. 59: Mason, J. M. Reading Readiness: A Definition and Skills Hierarchy from Preschoolers' Developing Conceptions of Print, September 1977. (ERIC Document Reproduction Service No. ED 145 403, 57p., HC \$3.50, MF \$.83)
- No. 60: Spiro, R. J., & Esposito, J. J. Superficial Processing of Explicit Inferences in Text, December 1977. (ERIC Document Reproduction Service No. ED 150 545, 27p., HC-\$2.06, MF-\$.83)
- No. 65: Brewer, W. F. Memory for the Pragmatic Implications of Sentences, October 1977. (ERIC Document Reproduction Service No. ED 146 564, 27p., HC-\$2.06, MF-\$83)
- No. 66: Brown, A. L., & Smiley, S. S. *The Development of Strategies for Study Prose Passages*, October 1977. (ERIC Document Reproduction Service No. ED 145 371, 59p., HC-\$3.50, MF-\$.83)
- No. 68: Stein, N. L., & Nezworski, T. *The Effects of Organization and Instructional Set on Story Memory*, January 1978. (ERIC Document Reproduction Service No. ED 149 327, 41p., HC-\$2.06, MF-\$.83)
- No. 69: Stein, N. L. How Children Understand Stories: A Developmental Analysis, March 1978. (ERIC Document Reproduction Service No. ED 153 205, 68p., HC-\$3.50, MF-\$.83)
- No. 76: Thieman, T. J., & Brown, A. L. The Effects of Semantic and Formal Similarity on Recognition Memory for Sentences in Children, November 1977. (ERIC Document Reproduction Service No. ED 150 551, 26p., HC-\$2.06, MF-\$.83)
- No. 77: Nash-Webber, B. L. Inferences in an Approach to Discourse Anaphora, January 1978. (ERIC Document Reproduction Service No. ED 150 552, 30p., HC-\$2.06, MF-\$.83)
- No. 78: Gentner, D. On Relational Meaning: The Acquisition of Verb Meaning, December 1977. (ERIC Document Reproduction Service No. ED 149 325, 46p., HC-\$2.06, MF-\$.83)
- No. 79: Royer, J. M. *Theories of Learning Transfer*, January 1978. (ERIC Document Reproduction Service No. ED 149 326, 55p., HC-\$3.50, MF-\$.83)

44

ERIC

Full Text Provided by ERIC

- No. 80: Arter, J. A., & Jenkins, J. R. *Differential Diagnosis-Prescriptive Teaching: A Cruscal Appraisal*, January 1978. (ERIC Document Reproduction Service No. ED 150 578, 104p., HC-\$6.01, MF-\$.83)
- No. 81: Shoben, E. J. Choosing a Model of Sentence Picture Comparisons: A Reply to Catlin and Jones, February 1978. (ERIC Document Reproduction Service No. ED 150 577, 30p., HC-\$2.06, MF-\$.83)
- No. 82: Steffensen, M. S. Bereiter and Engelmann Reconsidered: The Evidence from Children Acquiring Black English Vernacular, March 1978. (ERIC Document Reproduction Service No. ED 153 204, 31p., HC-\$2.06, MF-\$.83)
- No. 83: Reynolds, R. E., Standiford, S. N., & Anderson, R. C. Distribution of Reading Time When Questions are Asked about a Restricted Category of Text Information, April 1978. (ERIC Document Reproduction Service No. ED 153 206, 34p., HC-\$2.06, MF-\$.83)
- No. 84: Baker, L. *Processing Temporal Relationships in Simple Stories: Effects of Input Sequence*, April 1978. (ERIC Document Reproduction Service No. ED 157 016, 54p., HC-\$3.50, MF-\$.83)
- No. 85: Mason, J. M., Knisely, E., & Kendall, J. *Effects of Polysemous Words on Sentence Comprehension*, May 1978. (ERIC Document Reproduction Service No. ED 157 015, 34p., HC-\$2.06, MF-\$.83)
- No. 86: Anderson, T. H., Wardrop, J. L., Hively W., Muller, K. E., Anderson, R. I., Hastings, C. N., & Fredericksen, J. *Development and Trial of a Model for Developing Domain Referenced Tests of Reading Comprehension*, May 1978. (ERIC Document Reproduction Service No. ED 157 036, 69p., HC.\$3.50, MF.\$.83)
- No. 87: Andre, M. E. D. A., & Anderson, T. H. *The Development and Evaluation of a Self-Questioning Study Technique*, June 1978. (ERIC Document Reproduction Service No. ED 157 037, 37p., HC-\$2.06, MF-\$.83)
- No. 88: Bruce, B. C., & Newman, D. *Interacting Plans*, June 1978. (ERIC Document Reproduction Service No. ED 157 038, 100p., HC-\$4.67, MF-\$.83)
- No. 89: Bruce, B. C., Collins, A., Rubin, A. D., & Gentner, D. A Cognitive Science Approach to Writing, June 1978. (ERIC Document Reproduction Service No. ED 157 039, 57p., HC-\$3.50, MF-\$.83)
- No. 90: Asher, S. R. *Referential Communication*, June 1978. (ERIC Document Reproduction Service No. ED 159 597, 71p., HC-\$3.50, MF-\$.83)
- No. 91: Royer, J. M., & Cunningham, D. J. *On the Theory and Measurement of Reading Comprehension*, June 1978. (ERIC Document Reproduction Service No. ED 157 040, 63p., HC-\$3.50, MF-\$.83)
- No. 92: Mason, J. M., Kendall, J. R. Facilitating Reading Comprehension Through Text Structure Manipulation, June 1978. (ERIC Document Reproduction Service No. ED 157 041, 36p., HC-\$2.06, MF-\$.83)
- No. 93: Ortony, A., Schallert, D. L., Reynolds, R. E., & Antos, S. J. *Interpreting Metaphors and Idioms:* Some Effects of Context on Comprehension, July 1978. (ERIC Document Reproduction Service No. ED 157 042, 41p., HC-\$2.06, MF-\$.83)
- No. 94: Brown, A. L., Campione, J. C., & Barclay, C. R. *Training Self-Checking Routines for Estimating Test Readiness: Generalization from List Learning to Prose Recall*, July 1978. (ERIC Document Reproduction Service No. ED 158 226, 41p., HC-\$2.06, MF-\$.83)
- No. 95: Reichman, R. *Conversational Coherency*, July 1978. (ERIC Document Reproduction Service No. ED 159 658, 86p., HC-\$4.67, MF-\$.83)
- No. 96: Wigfield, A., & Asher, S. R. Age Differences in Children's Referential Communication Performance: An Investigation of Task Effects, July 1978. (ERIC Document Reproduction Service No. ED 159 659, 31p., HC \$2.06, MF \$.83)
- No. 97: Steffensen, M. S., Jogdeo, C., & Anderson, R. C. A Cross-Cultural Perspective on Reading Comprehension, July 1978. (ERIC Document Reproduction Service No. ED 159 660, 41p., HC-\$2.06, MF-\$.83)
- No. 98: Green, G. M. Discourse Functions of Inversion Construction, July 1978. (ERIC Document Reproduction Service No. ED 160 998, 42p., HC-\$2.06, MF-\$.83)
- No. 99: Asher, S. R. Influence of Topic Interest on Black Children and White Children's Reading Comprehension, July 1978. (ERIC Document Reproduction Service No. ED 159 661, 35p., HC-\$2.06, MF-\$.83)
- No. 100: Jenkins, J. R., Pany, D., & Schreck, J. *Vocabulary and Reading Comprehension: Instructional Effects*, August 1978. (ERIC Document Reproduction Service No. ED 160 999, 50p., HC-\$2.06, MF-\$.83)
- No. 101: Shoben, E. J., Rips, L. J., & Smith, E. E. Issues in Semantic Memory: A Response to Glass and Holyoak, August 1978. (ERIC Document Reproduction Service No. ED 159 662, 85p., HC-\$4.67, MF-\$.83)

- No. 102: Baker, L., & Stein, N. L. *The Development of Prose Comprehension Skills*, September 1978. (ERIC Document Reproduction Service No. ED 159 663, 69p., HC-\$3.50, MF-\$.83)
- No. 103: Fleisher, L. S., Jenkins, J. R., & Pany, D. *Effects on Poor Readers' Comprehension of Training in Rapid Decoding*, September 1978. (ERIC Document Reproduction Service No. ED 159 664, 39p., HC-\$2.06, MF-\$.83)
- No. 104: Anderson, T. H. Study Skills and Learning Strategies, September 1978. (ERIC Document Reproduction Service No. ED 161 000, 41p., HC-\$2.06, MF-\$.83)
- No. 105: Ortony, A. Beyond Literal Similarity, October 1978.
- No. 106: Durkin, D. What Classroom Observations Reveal about Reading Comprehension Instruction, October 1978. (ERIC Document Reproduction Service No. ED 162 259, 94p., HC-\$4.67, MF-\$.83)
- No. 107: Adams, M. J. *Models of Word Recognition*, October 1978. (ERIC Document Reproduction Service No. ED 163 431, 93p., HC \$4.67, MF \$.83)
- No. 108: Reder, L. M. Comprehension and Retention of Prose: A Literature Review, November 1978.
- No. 109: Wardrop, J. L., Anderson, T. H., Hively, W., Anderson, R. I., Hastings, C. N., & Muller, K. E. A Framework for Analyzing Reading Test Characteristics, December 1978.
- No. 110: Tirre, W. C., Manelis, L., & Leicht, K. L. The Effects of Imaginal and Verbal Strategies on Prose Comprehension in Adults, December 1978.
- No. 111: Spiro, R. J., & Tirre, W. C. Individual Differences in Schema Utilization During Discourse Processing, January 1979.
- No. 112: Ortony, A. Some Psycholinguistic Aspects of Metaphor, January 1979.
- No. 113: Antos, S. J. Processing Facilitation in a Lexical Decision Task, January 1979.
- No. 114: Gentner D. Semantic Integration at the Level of Verb Meaning, February 1979.
- No. 115: Gearhart, M., & Hall, W. S. Internal State Words: Cultural and Situational Variation in Vocabulary Usage, February 1979.
- No. 116: Pearson, P. D., Hansen, J., & Gordon, C. The Effect of Background Knowledge on Young Children's Comprehension of Explicit and Implicit Information, March 1979.
- No. 117: Barnitz, J. G. Reading Comprehension of Pronoun-Referent Structures by Children in Grades Two, Four, and Six, March 1979.
- No. 118: Nicholson, T., Pearson, P. D., & Dykstra, R. Effects of Embedded Anomalies and Oral Reading Errors on Children's Understanding of Stories, March 1979.
- No. 119: Anderson, R. C., Pichert, J. W., & Shirey, L. L. Effects of the Reader's Schema at Different Points in Time, April 1979.
- No. 120: Canney, G., & Winograd, P. Schemata for Reading and Reading Comprehension Performance, April 1979.
- No. 121: Hall, W. S., & Guthrie, L. F. On the Dialect Question and Reading, May 1979.
- No. 122: McClure, E., Mason, J., & Barnitz, J. Story Structure and Age Effects on Children's Ability to Sequence Stories, May 1979.
- No. 123: Kleiman, G. M., Winograd, P. N., & Humphrey, M. M. *Prosody and Children's Parsing of Sentences*, May 1979.
- No. 124: Spiro, R. J. Etiology of Reading Comprehension Style, May 1979.
- No. 125: Hall, W. S., & Tirre, W. C. The Communicative Environment of Young Children: Social Class, Ethnic, and Situational Differences, May 1979.
- No. 126: Mason, J., & McCormick, C. Testing the Development of Reading and Linguistic Awareness, May 1979.
- No. 127: Brown, A. L., & Campione, J. C. Permissible Inferences from the Outcome of Training Studies in Cognitive Development Research, May 1979.
- No. 128: Brown, A. L., & French, L. A. The Zone of Potential Development: Implications for Intelligence Testing in the Year 2000, May 1979.